首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   30篇
  2021年   15篇
  2020年   7篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   22篇
  2015年   29篇
  2014年   39篇
  2013年   38篇
  2012年   48篇
  2011年   52篇
  2010年   24篇
  2009年   30篇
  2008年   34篇
  2007年   29篇
  2006年   18篇
  2005年   26篇
  2004年   48篇
  2003年   18篇
  2002年   18篇
  2001年   8篇
  2000年   4篇
  1999年   10篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有552条查询结果,搜索用时 17 毫秒
91.
92.
93.
Protein phosphorylation plays critical roles in many regulatory mechanisms controlling cell activities and thus involved in various diseases. The cellular equilibrium of phosphorylation is regulated through the actions of protein kinases and phosphatases. Therefore, these regulatory proteins have emerged as promising targets for drug development. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), a potent inhibitor of SHP-1 and SHP-2 PTPs. Phosphatase activity of dual-specificity protein phosphatase 26 (DUSP26) was decreased by the inhibitor in a dose-dependent manner. Kinetic studies with NSC-87877 and DUSP26 revealed a competitive inhibition. NSC-87877 effectively inhibited DUSP26-mediated dephosphorylation of p38, a member of mitogen-activated protein kinase (MAPK) family. Since DUSP26 is involved in survival of anaplastic thyroid cancer (ATC) cells, NSC-87877 could be a therapeutic reagent for treating ATC.  相似文献   
94.
Trabeculae carneae are the smallest naturally arising collections of linearly arranged myocytes in the heart. They are the preparation of choice for studies of function of intact myocardium in vitro. In vivo, trabeculae are unique in receiving oxygen from two independent sources: the coronary circulation and the surrounding ventricular blood. Because oxygen partial pressure (PO2) in the coronary arterioles is identical in specimens from both ventricles, whereas that of ventricular blood is 2.5-fold higher in the left ventricle than in the right ventricle, trabeculae represent a “natural laboratory” in which to examine the influence of “extravascular” PO2 on the extent of capillarization of myocardial tissue. We exploit this advantage to test four hypotheses. (1) In trabeculae from either ventricle, a peripheral annulus of cells is devoid of capillaries. (2) Hence, sufficiently small trabeculae from either ventricle are totally devoid of capillaries. (3) The capillary-to-myocyte ratios in specimens from either ventricle are identical to those of their respective walls. (4) Capillary-to-myocyte ratios are comparable in specimens from either ventricle, reflecting equivalent energy demands in vivo, driven by identical contractile frequencies and comparable wall stresses. We applied confocal fluorescent imaging to trabeculae in cross section, subsequently using semi-automated segmentation techniques to distinguish capillaries from myocytes. We quantified the capillary-to-myocyte ratios of trabeculae from both ventricles and compared them to those determined for the ventricular free walls and septum. Quantitative interpretation was furthered by mathematical modeling, using both the classical solution to the diffusion equation for elliptical cross sections, and a novel approach applicable to cross sections of arbitrary shape containing arbitrary disposition of capillaries and non-respiring collagen cords.  相似文献   
95.

Background  

While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.  相似文献   
96.
97.
Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene‐expressing construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFP‐fibroblasts. Using this approach, we produced the first generation of transgenic dogs with four female and two male expressing RFP. genesis 47:314–322, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
98.
99.
Na+/H+ exchanger 3 (NHE3) plays a pivotal role in transepithelial Na+ and HCO3(-) absorption across a wide range of epithelia in the digestive and renal-genitourinary systems. Accumulating evidence suggests that PDZ-based adaptor proteins play an important role in regulating the trafficking and activity of NHE3. A search for NHE3-binding modular proteins using yeast two-hybrid assays led us to the PDZ-based adaptor Shank2. The interaction between Shank2 and NHE3 was further confirmed by immunoprecipitation and surface plasmon resonance studies. When expressed in PS120/NHE3 cells, Shank2 increased the membrane expression and basal activity of NHE3 and attenuated the cAMP-dependent inhibition of NHE3 activity. Furthermore, knock-down of native Shank2 expression in Caco-2 epithelial cells by RNA interference decreased NHE3 protein expression as well as activity but amplified the inhibitory effect of cAMP on NHE3. These results indicate that Shank2 is a novel NHE3 interacting protein that is involved in the fine regulation of transepithelial salt and water transport through affecting NHE3 expression and activity.  相似文献   
100.
Neuritogenesis requires active actin cytoskeleton rearrangement in which Rho GTPases play a pivotal role. In a previous study (Shin, E. Y., Woo, K. N., Lee, C. S., Koo, S. H., Kim, Y. G., Kim, W. J., Bae, C. D., Chang, S. I., and Kim, E. G. (2004) J. Biol. Chem. 279, 1994-2004), we demonstrated that betaPak-interacting exchange factor (betaPIX) guanine nucleotide exchange factor (GEF) mediates basic fibroblast growth factor (bFGF)-stimulated Rac1 activation through phosphorylation of Ser-525 and Thr-526 at the GIT-binding domain (GBD). However, the mechanism by which this phosphorylation event regulates the Rac1-GEF activity remained elusive. We show here that betaPIX binds to Rac1 via the GBD and also activates the GTPase via an associated GEF, smgGDS, in a phosphorylation-dependent manner. Notably, the Rac1-GEF activity of betaPIX persisted for an extended period of time following bFGF stimulation, unlike other Rho GEFs containing the Dbl homology domain. We demonstrate that C-PIX, containing proline-rich, GBD, and leucine zipper domains can interact with Rac1 via the GBD in vitro and in vivo and also mediated bFGF-stimulated Rac1 activation, as determined by a modified GEF assay and fluorescence resonance energy transfer analysis. However, nonphosphorylatable C-PIX (S525A/T526A) failed to generate Rac1-GTP. Finally, betaPIX is shown to form a trimeric complex with smgGDS and Rac1; down-regulation of smgGDS expression by short interfering RNA causing significant inhibition of betaPIX-mediated Rac1 activation and neurite outgrowth. These results provide evidence for a new and unexpected mechanism whereby betaPIX can regulate Rac1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号